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Abstract

This paper deals with the quadratic nonlinear oscillator (QNO) €xþ xþ ex2 ¼ 0. This oscillator is compared with the

nonlinear oscillators €xþ x� ejxjx ¼ 0, which are solved by the method of harmonic balance. Therefore, we obtain the first

approximate solution to the QNO. This solution is more accurate than the second approximate solution obtained by the

Lindstedt–Poincaré method. For QNOs, it has been pointed out that the angular frequency for xX0 should be different

from the angular frequency for xp0 if solutions of higher degree of accuracy are required.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Mickens [1] has recently examined the periodic solution of quadratic nonlinear oscillators (QNOs). QNOs
give useful models for both the testing of perturbation methods and the analysis of various phenomena in the
physical and engineering sciences [1,2]. In general, the quadratic nonlinear oscillating differential equations are
special cases of the second-order equation [1]

€xþ xþ ax2 þ bx _xþ gð _xÞ2 ¼ 0, (1)

where (a, b, g) are parameters and overdots denote differentiation with respect to time t. An example of Eq. (1)
is [2]

€xþ xþ ex2 ¼ 0; xð0Þ ¼ A40; _xð0Þ ¼ 0. (2)

The most widely used analytical techniques to solve nonlinear oscillation problems are the perturbation
methods [2–5]. Application of the Lindstedt–Poincaré method to Eq. (2) gives the following second
approximation [2]:

x2 ¼ xðy; eÞ ¼ A cos yþ e
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where y ¼ oðeÞt, and

o2 ¼ oðeÞ ¼ 1� e2
5A2

12

� �
þOðe3Þ. (4)

The corresponding approximate period of the oscillation is

T2 ¼
2p
o2
¼ 2p 1�

5e2A2

12

� ��1
þOðe3Þ. (5)

The Lindstedt–Poincaré method usually applies to weakly nonlinear oscillator problems [2–5]. The method
of harmonic balance is capable of producing analytical approximation to the solution to the nonlinear system,
valid even for the case where the nonlinear terms are not ‘‘small’’ [2]. But this method cannot be directly
applied to Eq. (2) because f ðxÞ ¼ xþ ex2 is not an odd function of x [6]. The main purpose of the
present paper is to use the method of harmonic balance for obtaining solutions to QNOs. Without loss of gener-
ality, we will consider Eq. (2) in detail. To this end, in Section 2 Eq. (2) is first compared with the following
equation [4]:

€xþ xþ ejxjx ¼ €xþ xþ ex2 sgnðxÞ ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0, (6)

where sgn(x) is the sign function, equal to +1 if x40, 0 if x ¼ 0, and �1 if xo0. Some remarks are given in
Section 3.

2. Comparison of Eq. (2) with Eq. (6)

In Eq. (6), the force function is

f ðxÞ ¼ xþ jxjx ¼ xþ sgnðxÞx2, (7)

which is the non-analytic odd function of x [4]. The first approximation to Eq. (6) based on the method of
harmonic balance is assumed in the form

x ¼ A cos oAt, (8)

where oA is the angular frequency of Eq. (6). It can be easily shown that the following Fourier series expansion
holds:

jA cos yjA cos y ¼ b1 cos yþ b3 cos 3yþ � � � . (9)

Here,

b1 ¼
2

p

Z p

0

jA cos yjA cos2 y dy ¼
4A2

p

Z p=2

0

cos3 y dy ¼
8A2

3p
, (10)

which is in agreement with the coefficient of cos ot on the right-hand side of Eq. (4.106) in Ref. [2].
Substituting Eq. (8) into Eq. (6) and taking into account Eq. (9), we have

�o2
A þ 1þ

8eA
3p

� �
A cos oAtþHOH ¼ 0, (11)

where HOH stands for higher-order harmonics. Setting the coefficient of cos oAt equal to zero and solving for
oA yields

oA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

8eA
3p

r
. (12)

Therefore, a first approximation to the periodic solution of Eq. (6) is

x ¼ A cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

8eA
3p

r
t. (13)
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The corresponding approximate period of oscillation is

TA ¼
2p
oA

¼ 2p 1þ
8

3p
eA

� ��1=2
. (14)

It should be pointed out that if the value of eA is small, Eq. (12) becomes

oA ¼ 1þ
4eA
3p

. (15)

Substituting Eq. (15) into Eq. (8) gives

x ¼ A cos 1þ
4eA
3p

� �
t, (16)

which is identical to the result obtained by the method of multiple scales [4]. Apparently when 0ptpTA=4,
xX0. In this case, Eq. (6) can be written as

€xþ xþ ex2 ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0; 0ptpTA=4, (17)

which is identical to Eq. (2). Therefore, Eq. (13) is also the approximate solution to Eq. (2) for 0ptpTA=4.
When TA=4ptpðTA=4Þ þ ðTB=2Þ (TB is given by Eq. (34)), xp0. In this case, we let

x ¼ �y, (18)

where yX0. Substituting x ¼ �y into Eq. (2) yields

€yþ y� ey2 ¼ 0; yð0Þ ¼ B40; _yð0Þ ¼ 0. (19)

Now we discuss the initial conditions in Eq. (19). Obviously, Eq. (2) can be rewritten as

_xd _xþ ðxþ ex2Þdx ¼ 0. (20)

Integrating of this equation gives the first integral

_x2

2
þ

x2

2
þ

ex3

3
¼ h, (21)

where h is a constant of integration. Assuming that the system oscillates between asymmetric limits [�B;A]
(B40), we have from Eq. (21)

B2

2
�

eB3

3
¼

A2

2
þ

eA3

3
. (22)

Solving this equation for B gives

B1 ¼ �A, (23)

B2;3 ¼
1

4e
3þ 2eA� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

4

3
eA 1þ eAð Þ

r" #
. (24, 25)

Since it is assumed that B40 and B! 0 if A! 0, we obtain

B ¼
1

4e
3þ 2eA� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

4

3
eA 1þ eAð Þ

r" #
, (26)

where

4

3
eAð1þ eAÞo1. (27)
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Solving this inequality results in

ð0oÞeAo
1

2
. (28)

If e ¼ 1, then Ao1=2, which is identical to the result in Ref. [7]. Based on the above discussion, we see that
in order to obtain the approximate periodic solution xðtÞðX0Þ to Eq. (2), it is necessary to resort to Eq. (6).
Similarly, for Eq. (19) we first consider the following equation:

€yþ y� ejyjy ¼ €yþ y� e sgnðyÞy2 ¼ 0; yð0Þ ¼ B; _yð0Þ ¼ 0. (29)

Now the first approximation to Eq. (29) is assumed to be

y ¼ B cos oBt, (30)

where oB is the angular frequency of Eq. (29). Substituting Eq. (30) into Eq. (29) and taking into account
Eq. (9), we have

�o2
B þ 1�

8eB
3p

� �
B cos oBtþHOH ¼ 0. (31)

Setting the coefficient of cos oBt equal to zero and solving for oB yields

oB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

8eB
3p

r
. (32)

Then from Eq. (30) we obtain

y ¼ B cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

8eB
3p

r
t. (33)

The corresponding approximate period of the oscillation to Eq. (29) is

TB ¼
2p
oB

¼ 2p 1�
8

3p
eB

� ��1=2
. (34)

Therefore, the first approximate period T1 and the corresponding periodic solution x1ðtÞ to Eq. (2) are,
respectively,

T1 ¼
TA þ TB

2
¼ p 1þ

8eA
3p

� ��1=2
þ 1�

8eB
3p

� ��1=2" #
(35)

and

x1 ¼ xðtÞ ¼ A cos oAt; 0ptp
TA

4
, (36a)

x1 ¼ xðtÞ ¼ B cos oB t�
TA

4
þ
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4

� �
;
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4
ptp

TA

4
þ
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2
, (36b)

x1 ¼ xðtÞ ¼ A cos oA tþ
TA

2
�

TB

2

� �
;

TA

4
þ

TB

2
ptpT1. (36c)

The exact period Te to Eq. (2) is

Te ¼

Z A

0

2 dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � x2 þ 2

3
eðA3 � x3Þ

q þ

Z B

0

2 dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � x2 � 2

3
eðB3 � x3Þ

q , (37)
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Table 1

Comparison of approximate periods with the corresponding exact period to Eq. (2) for e ¼ 1

A Te (Eq. (37)) T2 (Eq. (5)) T1 (Eq. (35))

0.10 6.3116 6.3095 6.3112

0.20 6.4114 6.3897 6.4095

0.30 6.6294 6.5280 6.6226

0.40 7.1246 6.7320 7.0962

0.45 7.7065 6.8622 7.6277

0.46 7.9052 6.8907 7.8014

0.47 8.1672 6.9201 8.0233

0.48 8.5452 6.9504 8.3278

0.49 9.2080 6.9816 8.8118
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Fig. 1. Comparison of the approximate solutions with the numerical solution for e ¼ 1, A ¼ 0:20.
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Fig. 2. Comparison of the approximate solutions with the numerical solution for e ¼ 1, A ¼ 0:30.
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where B is given, in terms of A, in Eq. (26). For comparison, the exact period Te obtained by integrating
Eq. (37) and the approximate periods T2 and T1 computed, respectively, by Eqs. (5) and (35) are listed in
Table 1. Table 1 indicates that T1 is more accurate than T2. Even when e ¼ 1 and A ¼ 0:49, the relative error
of T1 with respect to Te is less than 4.31%.
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Fig. 3. Comparison of the approximate solutions with the numerical solution for e ¼ 1, A ¼ 0:40.
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Fig. 4. Comparison of the approximate solutions with the numerical solution for e ¼ 1, A ¼ 0:49.
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The numerical solution xe of Eq. (2) obtained by using Runge–Kutta (R–K) method, and the approximate
analytical periodic solutions x2 and x1 computed, respectively, by Eqs. (3) and (36) are plotted in Figs. 1–4 for
the time in one exact period. These figures show that the first approximate solution x1 (Eq. (36)) obtained by
the method of harmonic balance is more accurate than the second approximate solution x2 (Eq. (3)) by the
Lindstedt–Poincaré method.

3. Concluding remarks

A QNO given in Eq. (2) has been attacked by the method of harmonic balance. The method is applied to the
two auxiliary equations (6) and (29), where the force functions are odd functions. It is well known that the
frequency of nonlinear oscillators is influenced by the amplitude of the oscillation [2,3]. Since the amplitudes of
the QNO described by Eq. (2) are not the same when xX0 and xp0, the frequency oA for xX0 should be
different from oB for xp0. The frequency of QNOs oAaoB, if solutions of higher degree of accuracy are
required, which is the important difference between the QNO and the cubic nonlinear oscillator. This
conclusion can be also reached if we note that there are two terms on the right-hand side of Eq. (37). Because
oAaoB, in this sense the QNO is more complicated than the cubic nonlinear oscillator. Obviously the
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equivalent linear equation corresponding to Eq. (2) can be written as

€xþ ð1þ oAÞx ¼ 0 for xX0, (38)

€xþ ð1þ oBÞx ¼ 0 for xp0. (39)

Similarly, if Eq. (1) has periodic solutions under certain conditions, we can apply the method of harmonic
balance to the following two auxiliary equations:

€xþ xþ ax2 sgnðxÞ þ bx _x sgnðxÞ þ gð _xÞ2 sgnðxÞ ¼ 0 for xX0, (40)

€xþ x� ax2 sgnðxÞ � bx _x sgnðxÞ � gð _xÞ2 sgnðxÞ ¼ 0 for xp0. (41)

Future work will center on applying the method presented in this paper to an oscillator with quadratic and
cubic terms described by [2–4]

€xþ xþ ax2 þ bx3 ¼ 0. (42)

The two auxiliary equations of this equation are

€xþ xþ ax2 sgnðxÞ þ bx3 ¼ 0 for xX0, (43)

€xþ x� ax2 sgnðxÞ þ bx3 ¼ 0 for xp0. (44)

For the nonlinear oscillator modeled by Eq. (2), the values of eA should satisfy eAo0:5 (Eq. (28)). If
eA ¼ 0:5, Eq. (2) has a homoclinic orbit with period þ1 (see, for instance, Ref. [7]). Therefore, the relative
errors of approximate periods and approximate periodic solutions are increased when A! 0:5 as shown in
Table 1 and Figs. 1–4. But this situation can be improved if the second approximate solutions are obtained.
Currently, the author is examining the use of an iteration technique to obtain second approximate solutions to
Eq. (2). Preliminary results are very encouraging.
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